Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Microbiol Spectr ; 12(4): e0370923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451227

RESUMO

Rotavirus A (RVA) is a major cause of acute gastroenteritis globally that is classically genotyped by its two immunodominant outer capsid proteins, VP7 (G-) and VP4 (P-). Recent evidence suggests that the reassortant equine-like G3P[8] strain played a substantial role in RVA transmission in Brazil since 2015. To understand its global emergence and dissemination in Brazilian territory, stool samples collected from 11 Brazilian states (n = 919) were genotyped by RT-qPCR and proceeded to sequence the VP7 gene (n = 102, 79 being newly generated) of the G3P[8] samples with pronounced viral loads. Our phylogenetic genotyping showed that G3P[8] became the dominant strain in Brazil between 2017 and 2020, with equine-like variants representing 75%-100% of VP7 samples in this period. A Bayesian discrete phylogeographic analysis strongly suggests that the equine-like G3P[8] strain originated in Asia during the early 2010s and subsequently spread to Europe, the Caribbean, and South America. Multiple introductions were detected in Brazil between 2014 and 2017, resulting in five national clusters. The reconstruction of the effective population size of the largest Brazilian cluster showed an expansion until 2017, followed by a plateau phase until 2019 and subsequent contraction. Our study also supports that most mutations fixed during equine-like G3P[8] evolution were synonymous, suggesting that adaptive evolution was not an important driving force during viral dissemination in humans, potentially increasing its susceptibility to acquired immunity. This research emphasizes the need for comprehensive rotavirus genomic surveillance that allows close monitoring of its ever-shifting composition and informs more effective public health policies.IMPORTANCEOur original article demonstrated the origin and spread in a short time of equine-like G3P[8] in Brazil and the world. Due to its segmented genome, it allows numerous mechanisms including genetic drift and reassortment contribute substantially to the genetic diversity of rotavirus. Although the effectiveness and increasing implementation of vaccination have not been questioned, a matter of concern is its impact on the emergence of escape mutants or even the spread of unusual strains of zoonotic transmission that could drive epidemic patterns worldwide. This research emphasizes the need for comprehensive rotavirus genomic surveillance, which could facilitate the formulation of public policies aimed at preventing and mitigating its transmission.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Cavalos/genética , Humanos , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/genética , Brasil/epidemiologia , Filogenia , Teorema de Bayes , Genoma Viral , Genótipo
2.
Microbiol Spectr ; 12(3): e0383123, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315011

RESUMO

The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron variant of concern that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of severe acute respiratory infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB* + F486P, XBB* + F486P + F456L, and XBB* + F486P + F456L + L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazil's epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB* + F486P + F456L + L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead. IMPORTANCE: Brazil was one the most affected countries by the SARS-CoV-2 pandemic, with more than 700,000 deaths by mid-2023. This study reconstructs the dissemination of the virus in the country in the first half of 2023, a period characterized by the dissemination of descendants of XBB.1, a recombinant of Omicron BA.2 lineages evolved in late 2022. The analysis supports that XBB dissemination was marked by the continuous emergence of indigenous lineages bearing similar mutations in key sites of their Spike protein, a process followed by continuous increments in transmissibility, and without repercussions in the incidence of severe cases. Thus, the results suggest that the epidemiological impact of the spread of a SARS-CoV-2 variant is influenced by an intricate interplay of factors that extend beyond the virus's transmissibility alone. The study also underlines the need for SARS-CoV-2 genomic surveillance that allows the monitoring of its ever-shifting composition.


Assuntos
COVID-19 , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
Nat Commun ; 15(1): 1837, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418815

RESUMO

Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , América Latina/epidemiologia , Pandemias , Filogenia , COVID-19/epidemiologia , Região do Caribe/epidemiologia
4.
Mem Inst Oswaldo Cruz ; 118: e230066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283423

RESUMO

BACKGROUND: Elite controllers (EC) are human immunodeficiency virus (HIV)-positive individuals who can maintain low viral loads for extended periods without antiretroviral therapy due to multifactorial and individual characteristics. Most have a small HIV-1 reservoir composed of identical proviral sequences maintained by clonal expansion of infected CD4+ T cells. However, some have a more diverse peripheral blood mononuclear cell (PBMC)-associated HIV-1 reservoir with unique sequences. OBJECTIVES: To understand the turnover dynamics of the PBMC-associated viral quasispecies in ECs with relatively diverse circulating proviral reservoirs. METHODS: We performed single genome amplification of the env gene at three time points during six years in two EC with high intra-host HIV DNA diversity. FINDINGS: Both EC displayed quite diverse PBMCs-associated viral quasispecies (mean env diversity = 1.9-4.1%) across all time-points comprising both identical proviruses that are probably clonally expanded and unique proviruses with evidence of ongoing evolution. HIV-1 env glycosylation pattern suggests that ancestral and evolving proviruses may display different phenotypes of resistance to broadly neutralising antibodies consistent with persistent immune pressure. Evolving viruses may progressively replace the ancestral ones or may remain as minor variants in the circulating proviral population. MAIN CONCLUSIONS: These findings support that the high intra-host HIV-1 diversity of some EC resulted from long-term persistence of archival proviruses combined with the continuous reservoir's reseeding and low, but measurable, viral evolution despite undetectable viremia.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , HIV-1/genética , Quase-Espécies/genética , Leucócitos Mononucleares , Carga Viral , Linfócitos T CD4-Positivos
6.
Nat Commun ; 14(1): 2048, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041143

RESUMO

The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil's most heavily affected regions. We sequenced the virus genome from 4128 patients collected in Amazonas between July 1st, 2021, and January 31st, 2022, and investigated the viral dynamics using a phylodynamic approach. The VOCs Delta and Omicron BA.1 displayed similar patterns of phylogeographic spread but different epidemic dynamics. The replacement of Gamma by Delta was gradual and occurred without an upsurge of COVID-19 cases, while the rise of Omicron BA.1 was extremely fast and fueled a sharp increase in cases. Thus, the dissemination dynamics and population-level impact of new SARS-CoV-2 variants introduced in the Amazonian population after mid-2021, a setting with high levels of acquired immunity, greatly vary according to their viral phenotype.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Brasil , Imunidade Adaptativa
7.
Mem. Inst. Oswaldo Cruz ; 118: e230066, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440670

RESUMO

BACKGROUND Elite controllers (EC) are human immunodeficiency virus (HIV)-positive individuals who can maintain low viral loads for extended periods without antiretroviral therapy due to multifactorial and individual characteristics. Most have a small HIV-1 reservoir composed of identical proviral sequences maintained by clonal expansion of infected CD4+ T cells. However, some have a more diverse peripheral blood mononuclear cell (PBMC)-associated HIV-1 reservoir with unique sequences. OBJECTIVES To understand the turnover dynamics of the PBMC-associated viral quasispecies in ECs with relatively diverse circulating proviral reservoirs. METHODS We performed single genome amplification of the env gene at three time points during six years in two EC with high intra-host HIV DNA diversity. FINDINGS Both EC displayed quite diverse PBMCs-associated viral quasispecies (mean env diversity = 1.9-4.1%) across all time-points comprising both identical proviruses that are probably clonally expanded and unique proviruses with evidence of ongoing evolution. HIV-1 env glycosylation pattern suggests that ancestral and evolving proviruses may display different phenotypes of resistance to broadly neutralising antibodies consistent with persistent immune pressure. Evolving viruses may progressively replace the ancestral ones or may remain as minor variants in the circulating proviral population. MAIN CONCLUSIONS These findings support that the high intra-host HIV-1 diversity of some EC resulted from long-term persistence of archival proviruses combined with the continuous reservoir's reseeding and low, but measurable, viral evolution despite undetectable viremia.

8.
Virus Evol ; 9(2): vead059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288387

RESUMO

Dengue virus serotype 2, genotype Cosmopolitan (DENV-2-GII), is one of the most widespread DENV strains globally. In the USA, DENV-2 epidemics have been dominated by DENV-2 genotype Asian-American (DENV-2-GIII), and the first cases of DENV-2-GII were only described in 2019, in Peru, and in 2021 in Brazil. To gain new information about the circulation of DENV-2-GII in Brazil, we sequenced 237 DENV-2 confirmed cases sampled between March 2021 and March 2023 and revealed that DENV-2-GII is already present in all geographic regions of Brazil. The phylogeographic analysis inferred that DENV-2-GII was introduced at least four times in Brazil, between May 2020 and August 2022, generating multiple clades that spread throughout the country with different success. Despite multiple introductions of DENV-2-GII, analysis of the country-wide laboratory surveillance data showed that the Brazilian dengue epidemic in 2022 was dominated by DENV-1 in most states. We hypothesize that massive circulation of DENV-2-GIII in previous years in Brazil might have created a population immune barrier against symptomatic homotypic reinfections by DENV-2-GII, leading to sustained cryptic circulation in asymptomatic cases and localized outbreaks of this new genotype. In summary, our study stresses the importance of arboviral genomic surveillance to close monitoring and better understanding the potential impact of DENV-2-GII in the coming years.

9.
Viruses ; 14(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560771

RESUMO

The study of HIV-1 transmission networks inferred from viral genetic data can be used to clarify important factors about the dynamics of HIV-1 transmission, such as network growth rate and demographic composition. In Brazil, HIV transmission has been stable since the early 2000s and the study of transmission clusters can provide valuable data to understand the drivers of virus spread. In this work, we analyzed a nation-wide database of approximately 53,000 HIV-1 nucleotide pol sequences sampled from genotyped patients from 2008-2017. Phylogenetic trees were reconstructed for the HIV-1 subtypes B, C and F1 in Brazil and transmission clusters were inferred by applying genetic distances thresholds of 1.5%, 3.0% and 4.5%, as well as high (>0.9) cluster statistical support. An odds ratio test revealed that young men (15-24 years) and individuals with more years of education presented higher odds to cluster. The assortativity coefficient revealed that individuals with similar demographic features tended to cluster together, with emphasis on features, such as place of residence and age. We also observed that assortativity weakens as the genetic distance threshold increases. Our results indicate that the phylogenetic clusters identified here are likely representative of the contact networks that shape HIV transmission, and this is a valuable tool even in sites with low sampling density, such as Brazil.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Masculino , Humanos , HIV-1/genética , Brasil/epidemiologia , Filogenia , Genótipo , Análise por Conglomerados
10.
Viruses ; 14(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560806

RESUMO

The analysis of the HIV-1 proviral dynamics after superinfection in the context of both natural and antiretroviral therapy (ART)-mediated suppression could yield unique insights into understanding the persistence of viral variants that seeded the infected cells at different times. In this study, we performed a longitudinal analysis of the env diversity of PBMC-associated HIV DNA quasispecies in two HIV controllers (EEC09 and VC32) that were superinfected with subtype F1 viruses several years after primoinfection with subtype B viruses. Patient EEC09 started ART soon after superinfection, while patient VC32 maintained a natural control of virus replication for at least six years following the superinfection. Our analysis revealed no significant temporal changes in the overall proportion of primo-infecting and superinfecting proviral variants over 2-3 years after superinfection in both HIV controllers. Upon the introduction of ART, individual EEC09 displayed no evidence of HIV-infected cell turnover or viral evolution, while subject VC32 displayed some level of HIV-infected cell reseeding and detectable evolution (divergence) of both viral variants. These results confirm that proviral variants that seeded the reservoir at different times throughout infection could persist for long periods under fully suppressive ART or natural viremic control, but the HIV-1 proviral dynamics could be different in both settings.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Superinfecção , Humanos , Provírus/genética , HIV-1/genética , Leucócitos Mononucleares , Replicação Viral , Carga Viral
11.
Front Microbiol ; 13: 992640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325024

RESUMO

Angola, located in Central Africa, has around 320,000 (270,000-380,000) people living with human immunodeficiency virus (HIV)/AIDS, equivalent to 1% of the country's population at the end of 2021. A previous study conducted in 2012, using Angolan samples collected between 2008 and 2010 revealed a high prevalence of HIV-1 recombinants, around 42% of sequences, with 21% showing the same UH profile in partial pol region which were grouped into a monophyletic cluster with high bootstrap support. Thus, the objective of the present work was to obtain complete genomes of those sequences and characterize them, aiming at a description of a new circulating recombinant form (CRF). Whole blood from nine HIV-1 UH pol-infected individuals had their genomic DNA extracted, and nested PCR was used to amplify seven overlapping fragments targeting the full-length HIV-1 genome. The final classification was based on maximum likelihood trees, and recombination analyses were performed using a bootscan from the Simplot program. BLAST and Los Alamos Database inspections were used to search other similar H-like pol sequences. Complete genome amplification was possible for three samples, partial genomes were obtained for the other three, and only pol was available for the remaining three sequences. Bootscan analysis of the two whole-genome and three partial genome sequences retrieved from people living with HIV/AIDS (PLHIVA) without epidemiological linkage showed the same complex recombination profile involving HIV-1 subtypes A/G/H/CRF27_cpx, with a total of six recombinant breakpoints, aiming to classify a new HIV-1 CRF124_cpx. We found no other full-length HIV-1 genomes with the same mosaic profile; however, we identified 33 partial pol sequences, mainly sampled from Angola between 2001 to 2019, with the same H-like profile. Bayesian analysis of H and H-like pol sequences indicates that CRF124_cpx probably originated in Angola at mid-1970s, indicating that this CRF has been circulating in the country for a long time. In summary, our study describes a new CRF circulating principally in Angola and highlights the importance of continuing molecular surveillance studies, especially in countries with high molecular diversity of HIV.

12.
Microbiol Spectr ; 10(5): e0264121, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000897

RESUMO

The SARS-CoV-2 variant of concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the southern region, followed by more cases in different regions during the following months. By early September 2021, Delta was already the dominant variant in the southeastern (87%), southern (73%), and northeastern (52%) Brazilian regions. This study aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of maximum likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 VOC Delta complete genomes (482 from this study) recovered across 21 of the 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the southeastern, northeastern, northern, and central-western regions. The AY.101 lineage (n = 207) that arose in the Paraná state in late April 2021 and aggregated the largest fraction of sampled genomes from the southern region. Lastly, the AY.46.3 lineage emerged in Brazil in the São Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic. IMPORTANCE Amid the SARS-CoV-2 continuously changing epidemic profile, this study details the space-time dynamics of the emergence of the Delta lineage across Brazilian territories, pointing out its multiple introductions in the country and its most prevalent sublineages. Some of these sublineages have their emergence, alongside their genomic composition and geographic distribution, detailed here for the first time. A special focus is given to the emergence process of Delta outside the country's south and southeast regions, the most populated and subjects of most published SARS-CoV-2 studies in Brazil. In summary, the study allows a better comprehension of the evolution process of a SARS-CoV-2 lineage that would be associated with a significant recrudescence of the pandemic in Brazil.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiologia , Pandemias , COVID-19/epidemiologia , Teorema de Bayes
13.
iScience ; 25(4): 104156, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35368908

RESUMO

The COVID-19 epidemic in Brazil experienced two major lineage replacements until mid-2021. The first was driven by lineage P.2, in late 2020, and the second by lineage Gamma, in early 2021. To understand how these SARS-CoV-2 lineages spread in Brazil, we analyzed 11,724 genomes collected throughout the country between September 2020 and April 2021. Our findings indicate that lineage P.2 probably emerged in July 2020 in the Rio de Janeiro state and Gamma in November 2020 in the Amazonas state. Both states were the main hubs of viral disseminations to other Brazilian locations. We estimate that Gamma was 1.56-3.06 times more transmissible than P.2 in Rio de Janeiro and that the median effective reproductive number (Re) of Gamma varied according to the geographic context (Re = 1.59-3.55). In summary, our findings support that lineage Gamma was more transmissible and spread faster than P.2 in Brazil.

14.
Sci Rep ; 12(1): 6874, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35478213

RESUMO

All South American countries from the Southern cone (Argentina, Brazil, Chile, Paraguay and Uruguay) experienced severe COVID-19 epidemic waves during early 2021 driven by the expansion of variants Gamma and Lambda, however, there was an improvement in different epidemic indicators since June 2021. To investigate the impact of national vaccination programs and natural infection on viral transmission in those South American countries, we analyzed the coupling between population mobility and the viral effective reproduction number [Formula: see text]. Our analyses reveal that population mobility was highly correlated with viral [Formula: see text] from January to May 2021 in all countries analyzed; but a clear decoupling occurred since May-June 2021, when the rate of viral spread started to be lower than expected from the levels of social interactions. These findings support that populations from the South American Southern cone probably achieved the conditional herd immunity threshold to contain the spread of regional SARS-CoV-2 variants circulating at that time.


Assuntos
COVID-19 , SARS-CoV-2 , Brasil , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Vacinação
15.
Front Microbiol ; 13: 835443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330760

RESUMO

The HIV-1 epidemic in the Amazonas state, as in most of Brazil, is dominated by subtype B. The state, nonetheless, is singular for its significant co-circulation of the variants BCAR, which can mostly be found in the Caribbean region, and BPAN, a clade that emerged in the United States and aggregates almost the totality of subtype B infections world-wide. The Amazonian HIV-1 epidemic provides a unique scenario to compare the epidemic potential of BPAN and BCAR clades spreading in the same population. To reconstruct the spatiotemporal dynamic and demographic history of both subtype B lineages circulating in Amazonas, we analyzed 1,272 HIV-1 pol sequences sampled in that state between 2009 and 2018. Our phylogeographic analyses revealed that while most BCAR infections resulted from a single successful founder event that took place in the Amazonas state around the late 1970s, most BPAN infections resulted from the expansion of multiple clusters seeded in the state since the late 1980s. Our data support the existence of at least four large clusters of the pandemic form in Amazonas, two of them nested in Brazil's largest known subtype B cluster (BBR-I), and two others resulting from new introductions detected here. The reconstruction of the demographic history of the most prevalent BPAN (n = 4) and BCAR (n = 1) clades identified in Amazonas revealed that all clades displayed a continuous expansion [effective reproductive number (R e) > 1] until most recent times. During the period of co-circulation from the late 1990s onward, the Re of Amazonian BPAN and BCAR clusters behaved quite alike, fluctuating between 2.0 and 3.0. These findings support that the BCAR and BPAN variants circulating in the Brazilian state of Amazonas displayed different evolutionary histories, but similar epidemic trajectories and transmissibility over the last two decades, which is consistent with the notion that both subtype B variants display comparable epidemic potential. Our findings also revealed that despite significant advances in the treatment of HIV infections in the Amazonas state, BCAR and BPAN variants continue to expand and show no signs of the epidemic stabilization observed in other parts of the country.

16.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297757

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.


Assuntos
COVID-19/virologia , Coinfecção/virologia , SARS-CoV-2/genética , Superinfecção/virologia , Brasil , Genoma Viral , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único
17.
Microbiol Spectr ; 10(1): e0236621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196783

RESUMO

The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ144 or Δ141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we did not find an increased incidence of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sublineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting more infectious variants or antibody evasion mutations is expected to increase. IMPORTANCE The continuous evolution of SARS-CoV-2 is an expected phenomenon that will continue to happen due to the high number of cases worldwide. The present study analyzed how a Variant of Concern (VOC) could still circulate in a population hardly affected by two COVID-19 waves and with vaccination in progress. Our results showed that the answer behind that was a new generation of Gamma-like viruses, which emerged locally carrying mutations that made it more transmissible and more capable of spreading, partially evading prior immunity triggered by natural infections or vaccines. With thousands of new cases daily, the current pandemics scenario suggests that SARS-CoV-2 will continue to evolve and efforts to reduce the number of infected subjects, including global equitable access to COVID-19 vaccines, are mandatory. Thus, until the end of pandemics, the SARS-CoV-2 genomic surveillance will be an essential tool to better understand the drivers of the viral evolutionary process.


Assuntos
COVID-19/enzimologia , Furina/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Motivos de Aminoácidos , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Furina/genética , Genômica , Humanos , Mutação , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Virus Evol ; 7(2): veab069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532067

RESUMO

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. Importantly, we detected the community transmission of different P.1 lineages bearing NTD indels ∆69-70 (which can impact several SARS-CoV-2 diagnostic protocols), ∆144 and ins214ANRN, and a new VOI N.10 derived from the B.1.1.33 lineage carrying three NTD deletions (∆141-144, ∆211, and ∆256-258). These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil generates new viral lineages that might be more resistant to antibody neutralization than parental variants of concern.

19.
Viruses ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578382

RESUMO

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/transmissão , Genoma Viral , Humanos , Mutação , Filogeografia , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , Uruguai
20.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34437831

RESUMO

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Humanos , Uruguai/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...